首页> 外文OA文献 >On a training-less solution for non-intrusive appliance load monitoring using graph signal processing
【2h】

On a training-less solution for non-intrusive appliance load monitoring using graph signal processing

机译:基于图形信号处理的非侵入式设备负载监控的免培训解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing a NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets - the US REDD dataset with active power measurements downsampled to 1min resolution and the UK REFIT dataset with 8sec resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with state-of-the-art supervised and unsupervised NALM approaches as benchmarks.
机译:随着全球范围内大规模智能能源计量部署的进行,使用分析工具将家庭的总能源消耗分解为单个设备。非侵入式设备负载监控(NALM)最近引起了越来越多的研究兴趣。 NALM可以加深能源反馈,支持设备改造建议并支持家庭自动化。然而,尽管NALM是30年前提出的,但在低采样率下其实用性和有效性方面仍然存在许多公开挑战。实际上,大多数有监督或无监督的NALM方法都需要培训以建立设备模型,并且对房屋中的设备更改敏感,因此需要定期进行重新培训。在本文中,我们通过提出不需要任何培训的NALM方法来应对这一挑战。主要思想是在新兴的图形信号处理领域上进行自适应阈值处理,信号聚类和模式匹配。我们确定方法的性能极限,并在实践中证明其有用性。使用两个开放式访问数据集-将有功功率测量值降低到1min分辨率的美国REDD数据集和将8sec分辨率降低到UK REFIT数据集,我们以最先进的技术展示了该方法对典型智能电表采样率的有效性有监督和无监督的NALM方法作为基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号